
“l_---_l---l..._

GAO
1111i t.c!d St.;lt CH Gt*rl(tr;ll Accouufing Offi<:e --._-.-- “- . ..-... ---

Rq~ort, to the Chairman, Subcommittee
on Defense, Committee on
Appropriations, House of
IZepxwWatives

Major Issues Need to
Be Resolved Before
Benefits Can Be
Achieved

148494

RESTRICTED--Not to be released outside the
General Accounting Office unless specifically
approved by the Office of Congressional
Relations. 5~~33 3 RELEASED

GAO united States
General Accounting Ofl’ice
Washington, D.C. 20648

Information Management and
Technology Division

B-251642

January 28, 1993

The Honorable John P. Murtha
Chairman, Subcommittee on Defense
Committee on Appropriations
House of Representatives

Dear Mr. Chairman:

The Department of Defense (DOD) estimates that expenditures for
developing and maintaining software for its weapons, command and
control, and other automated information systems currently exceed
$24 billion a year. In an attempt to better manage these costs and improve
its ability to develop and maintain high-quality software, Defense has
initiated a comprehensive effort to incorporate software reuse practices
into its software development efforts. Software reuse-the practice of
developing new applications from existing software-offers the potential
to greatly reduce the time, cost, and effort needed to develop and maintain
highquality software.

As requested by your office, this report provides background information
on software reuse, including an overview of issues that can inhibit
effective software reuse and information on Defense’s strategy to
implement a departmentwide software reuse program. Appendix I further
details our objectives, scope, and methodology. Appendix II provides
information on Defense’s initiatives to incorporate software reuse into its
software development process.

Results in Brief Developing and maintaining software in organizations such as the
Department of Defense is very costly. According to many experts in the
software community, software reuse is a possible solution to reduce these
costs, as well as to increase software productivity and reliability. Although
these benefits and savings are compelling, achieving them will require the
resolution of significant technical, organizational, and legal issues.

a

Even while proclaiming the potential of reuse, many software experts have
questioned the maturity of software reuse. These experts indicate that
methodologies to implement reuse have not been fully developed, tools to
support a reuse process are lacking, and standards to guide critical
software reuse activities have not been established.

Page 1 GACMMTEC93-16 Issues Facing Sohare Reuse

B-221242

Beyond such technical difficulties, organizations also face numerous
challenges to effectively implement and practice software reuse. An
organization must make a significant commitment to reuse because
fundamental changes in the organization’s software development
approach will be needed and significant up-front costs for training and
tools will be required. Further, uncertainties in legal policies, such as
liability and intellectual property rights that currently hinder software
reuse, need to be addressed, and acquisition policies need to be modified
to better promote reuse.

Background Software reuse is the practice of using existing software components to
develop new applications. Reusable software components can be
executable programs, code segments, documentation, requirements,
design and architectures, test data and test plans, or software tools. They
may also be knowledge and information needed to understand, develop,
use, or maintain the component. Figure 1 shows examples of the different
types of reusable software components.

Page 2 GAOAMTJZ-93-16 Ieauea Facing Software Reuse

BJIlW2

:Igure 1: Examplw of Reurable Software Component8

Executable
programs

Software -
tools requirements

Knowledge and
experience .

Test data and
test plans

Designs and
architectures

There are two basic forms of software reuse--opportunistic and
systematic. Opportunistic reuse is practiced in an ad-hoc fashion during
software development. In opportunistic reuse, new applications are
developed from software that has been salvaged from existing systems and
modified to meet the specific needs of that application. Systematic reuse is
planned and integrated into a welldefined software development process.
In systematic reuse, new applications are developed from software that
has been designed and developed to be reused specifically for other
similar applications.’

IIn systematic reuse, new reusable software is also created as a by-product of applications
development.

Page 2 GAO/IMTEC-93-16 Iaaue# Facing Software Beuse

B-22lS42

Software reuse can be practiced vertically or horizontally. Vertical reuse is
the reuse of software components within a single domain2 For example, a
software component that implements procedures to withdraw federal
taxes from a paycheck can be reused by different accounting systems
within the payroll application domain. Horizontal reuse, on the other hand,
is the reuse of software components across different domains. For
example, software components, such as sort and merge procedures, can
be reused by systems in many application domains.

Software Reuse Process The software reuse process consists of three stages: component creation,
component management, and component utilization, as shown in figure 2.

!bftvvare Reuse Process

I1
I e,--,,,,A I Comwnents

Figure 2: Conceptual Framework of the Software Reuse Process

I Sourm: DARPA

Application software
-. systems end other

so~aremMed
products

2A domain is a family of related systems that exhibit common objecta and operations.

Page 4

,’ : ,

GAMMTEC-93-16 Issues Facing Sottwsre Beuse

” ,I

B-261642

This framework, established by the Defense Advanced Research Projects
Agency’s (DARPA) Software Technology for Adaptable Reliable Systems
(STARs) program , presents the flow of information within the software
reuse process and its products. During component creation, domains
where reuse is possible are identified and reusable software components
are developed. Once components are developed, they are stored and
managed in a software repository, which is a library that allows users to
access, search, and retrieve the components. Key functions of component
management include certifying, classifying, and cataloguing components,
as well as configuration control of the software components as a result of
software upgrades and maintenance. Figure 3 illustrates the basic
functions of component management.

igure 3: Key Functions of Component Management

Maintain component
and control its
configuration

Rausabb CettUy componant
4 for quality, fllnctMallly, --+

classtfy componenl Catalogue component
according to its -+ andanyredatad

---) Repository

componsnt and wmpkdenaas characteristics information

In component utilization, components in the repository are searched,
evaluated, selected, and integrated into the software product under
development. Components can be used to either develop application
software systems or create new reusable components and software-related
products.

Potential Benefits of
Software Reuse

Systematic reuse is viewed as a possible means to reduce software
development costs while improving software quality. According to a
number of software experts, reuse has the potential to

Page 6 GAOAMTBC-QI)-16 Issues Facing Software Reuse

B.26 1542

l increase productivity by reducing the time and effort needed to develop
software,

l increase reliability because systems will be developed with thoroughly
tested and proven components,

l reduce costs by sharing knowledge and practices needed to develop and
maintain software, and

l establish a more standard and consistent approach to software
development and maintenance by using common components and
procedures.

As an example, the Software Engineering Laboratory (SEL) at the National
Aeronautics and Space Administration’s (NASA) Goddard Space ‘Flight
Center achieved significant benefits by implementing software reuse in the
development of software products in its Flight Dynamics Division. In a
1991 study, SEL reported

l a 3fipercent reduction in effort needed to deliver a line of code (from .66
to .42 staff hours),

. a B-percent increase in daily productivity (from 12.4 to 19 lines of code
per day), and

. an 87-percent increase in quality (from 3.9 errors to .6 errors per thousand
lines of delivered code).3

While the results of the SEL study appear prom ising, experts caution that
the benefits of software reuse are not easily or quickly realized. The
potential impact of software reuse remains questionable because of
technical, organizational, and legal issues that need to be addressed.

T&hnical Issues Establishing a systematic software reuse program is difficult. Few
organizations-in either the private or public sectors-have been able to 1,
incorporate software reuse into their software development practices
because the technical knowledge to develop and apply software reuse
methodologies, standards, and tools is still evolving. Table 1 summarizes
the technical barriers to software reuse discussed in the following
sections.

%oceedings of the Sixteenth Annual NASA/Goddard Software Engineering Workshop: Experiments in
So ware n ineerin ft ecnoo , ecember 199 .

Page 6 GAO/IMTEC-93-M hues Facing Software Eeuse

-~ - -
B-261642

Tabk 1: Bummary of TechnIcal Iraue8

Domain analysis -lack of standard methods to process information on
domains
-lack of standard methods to represent the outputs of
domain analysis

Classification of software
components

Interoperability of software
repositories

-no accepted standards to classify components
-classification depends upon a domain analysis
-lack of standards for interoperation of repositories

Adaptation of software
components

Reuse of systems designs
and architectures

-adaptation depends upon the availability of information
on component
-more required adaptation can offset the savings and
benefits of software reuse
-designs and architectures are harder to represent
because they are more abstract
-lack of standards to represent designs and architectures
-lack of tools to represent, develop, and maintain designs
and architectures

Software metrics -lack of standard metrics
-inconsistent interpretation of metrics
-collecting metrics is expensive and time-consuming

Domain Analysis Domain analysis involves systematically gathering and representing
information on software applications. Experts in the software communiiy
generally agree that domain analysis is at the “heart of reuse.” Its purpose
is to generalize common features in similar application areas, identify the
common objects and operations in these areas, and define and describe
their relationships. Once collected, the information can be used to create
reusable software components that support these areas. For example, in
an airline reservation system domain, common objects are flights and
seats, while common operations include flight scheduling and seat
assignments. These objects and operations are related in specific ways to
the airline reservation system domain. As such, software components that
support these objects and operations could be reused by developers of
other airline reservation systems.

Domain analysis is a complex process that involves acquiring and
representing knowledge on specific domains. Information on the domain
must be identified, compiled, analyzed, and represented in a format so that
it can be reused. The domain analyst needs to not only identify the objects
and operations and their relationships in the domain, but also be able to
explicitly represent that information so others can easily understand and
reuse it.

Page 7 GAO/IMTEX-02-16 Iesuea Facing Software Beuse

B-261642

However, standard methods to process and represent information on a
domain are lacking. Current domain analysis methodologies, such as the
Software Engineering Institute’s Feature Oriented Domain Analysis (FODA)
and Dr. Ruben Prieto-Diaz’s Top-Down, Bottom-up Approach, are still
evolving and thus do not completely address these functions4

Classification of Software
Components

Classification is a process of systematically grouping reusable software
components stored in a software repository. A classification scheme for a
software repository is analogous to the Dewey Decimal System for a
library. Its purpose is to provide the basic organization of a repository so
users can easily access, search, and retrieve components in the repository.

Establishing a classification scheme is knowledge-intensive and
time-consuming. It requires combining the knowledge inherent in the
components of the repository with the knowledge about the application
domain where the components are going to be used. Common
characteristics of the components are then grouped and organized into a
structure that can be easily understood by repository users. While
automated tools exist to catalogue software components (store and
retrieve components in a repository), the key difficulty in classification is
how to organize the overall repository because there are no accepted
standards for classifying components.

Interoperability of
SoFtware Repositories

Interoperability is the ability of two or more systems to exchange
information. It is an important capability in instances where multiple
repositories exist because it perm its software repositories to share
components, reduce the number of redundant components in the different
repositories, and make components available to all repository users. b

Development is currently underway, for example, in DARPA'S STARS program
to establish an architectural framework for repository interoperability.
However, standards for interoperability of software repositories, such as
nomenclature, communication protocols, and component exchange
formats, do not exist. Currently the Reuse Library Interoperability Group
(RIG) is addressing standards for interoperability and plans to submit

‘For more information on FODA, contact Dr. Sholom Cohen, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa. For more information on the Diaz model, contact Dr. Ruben
Prleto-Diaz, Reuse Inc., Fairfax, Va.

Page 8 GAO/IMTEC-93.16 Issues Facing Software Reuse

B-261642

proposals to standards organizations, such as the Institute of Electrical
and Electronics Engineeringa

Adaptation of Software
Components

Adaptation involves modifying a software component to make it reusable
in different software applications. It requires the software developer to
determ ine what interfaces are needed and then tailor the component
and/or application to make them operate together. Since the current
state-of-practice is mainly opportunistic, most of the benefits that can be
gained from software reuse are highly dependent on effective adaptation
methods. However, adaptation is a difficult process because the developer
has to understand

. how the component currently functions,

. how the new application works, and
l what modifications are needed to make the component work in the new

application.

W ithout this information, a developer cannot easily adapt the software
component for reuse. Even with the information, the adaptation process
can be labor-intensive, potentially offsetting time and cost savings
prom ised from software reuse.

Reuse of Systems Designs
and Architectures

Although the current state-of-practice of software reuse has been mainly
lim ited to the reuse of code, experts believe that the reuse of other
software products, such as systems designs and architectures, can further
increase the benefits of software reuse. They call this ‘higher-level reuse”
because it involves reusing products that are from software development
phases that occur prior to (or higher than) the one in which code is
written6 According to these experts, the reuse of higher-level components
will yield greater benefits because designs and architectures

l are more flexible than code because they are independent of language,
hardware platforms, and implementation-specific details;

. represent application solutions rather than implementation solutions; and

“RIG is a volunteer organization composed of members from government, academia, and private
industry. Membership is open to any organization interested in the lnteroperability of
government-sponsored reuse libraries.

OIn the traditional software development process, there are four successive phases: planning, design,
coding and testing, and integration and testing. In the planning phase, requirements are set; during the
design phase, designs and architectures are developed; in the coding and testing phase, code is written
and tested; and in the integration and testing phase, the coded components are combined and tested as
a whole.

Page 9 GAOAMTJZC-93-16 Issues Facing Software Reuse

.”

B-251642

l can be used to automatically create lower-level components, such as code.

However, formally representing systems designs and architectures in a
reusable form is very difficult because they are not as tangible as code.
Further, standards and tools to represent and develop systems designs and
architectures are lacking.

Software Metrics Software metrics are quantifiable measures that are used to assess the
products and processes of software development. Such metrics may
include measures of usefulness, cost, and quality that could be used to
better manage software development programs. However, identifying and
establishing metrics is difficult because standard methodologies do not
exist to collect data for software development and products in general, or
for reuse in particular. As such,

. current metrics are inconsistent,
l interpretation of metrics can vary from individual to individual, and
. collecting metrics is a very expensive and time-consuming process.

W ithout effective metrics, organizations cannot adequately determ ine the
costs and benefits of incorporating software reuse into their software
development processes.

Organizational Issues Software reuse will not happen merely because the technical means for
achieving it become available. Software experts told us that top
management must be convinced to make a business decision to
incorporate systematic reuse into the software development process.
Further, project managers and software developers must be willing to
make fundamental changes in the way they develop software. Otherwise, b
software reuse will remain at the opportunistic level, and the potentially
greater benefits of systematic reuse will not be realized.

Gaining Management
Support and Commitment

Experts have stated that for a software reuse program to be successful,
top management must decide and commit to implementing a systematic
reuse program throughout the organization. They noted that top
management needs to

l incorporate software reuse practices into the software development
process,

Page 10 GAOAMTEC-93-18 Issues Facing Software Reuse

__-.-
B-261542

. train and educate employees on software reuse,

. develop and provide tools to practice software reuse, and
l allocate the proper funds and resources to support a reuse program.

However, experts generally agree that overall such management support is
lacking. For example, at a jointly sponsored workshop by the Software
Productivity Consortium, the Microelectronics and Computer Technology
Corporation, the Software Engineering Institute, and the Rocky Mountain
Institute on Software Engineering, attendees unanimously agreed that
management generally has a short-sighted view on software development
and is often not willing to commit resources to acquire needed tools and
training in software reuse technology.

In addition, some experts believe that top management is hesitant to invest
in software reuse because the benefits of software reuse are not quickly
realized and are uncertain. To illustrate, some experts estlmate that the
savings from reusing a component will not be realized until that
component has been reused at least three times and believe that it initially
costs about 20 to 66 percent more to develop reusable software.

Gaining Support of Project Another common organizational issue is the unwillingness of project
Managers and Developers managers and software developers to develop and use reusable

components. As noted above, developing reusable software is more costly
and time-consuming. As such, project managers, who are often pushed by
limited funds and tight schedules, have little incentive to allocate the
additional time and resources needed to develop reusable software
components.

Additionally, software developers are often reluctant to accept and use
reusable components for fear that the components will not be as efficient,
effective, or reliable as the software they write. Further, using reusable
software components requires that the components be understood and
adapted to meet the specific needs of a software system before it can be
integrated. In either case, the reluctance of software developers to use
reusable software and the lack of incentives for program managers to
develop reusable software components remain issues that need to be
addressed.

Legal Issues ” The software community’s hope for widespread reuse also brings about a
number of challenging legal issues. The Institute for Defense Analysis (IDA)

Page 11 GAO/IlMTEX-93-16 hues Facing Software Reuse

B-261642

recently published the proceedings of a 1990 workshop on legal issues,
sponsored by the Strategic Defense Initiative Organization.’ The workshop
reached the following conclusions:

l Large-scale software reuse will likely cause more complex and more
frequent encounters with legal issues.

l Large-scale reuse will require a national registry that tracks the source of
original development and modifications for each component.

. A mechanism is needed to reward developers who modify and add value
to existing components, while still protecting the rights of the original
developer.

l It is not good policy and may conflict with federal law if the government
assumes all legal liabilities associated with a reuse repository.

l Software patents and licensing policies need to be addressed.

Our discussions with reuse experts in the software community
corroborated these concerns. Most believed that strategies are needed to
address intellectual property rights, liability, and acquisition policies of
reuse.

Intellectual Property
R ights

Software is protected legally as intellectual property through laws that
control its dissemination and use. These laws relate to the exclusive
ownership of the idea, the form of expression of the idea, and the use of
the idea and its expression. There are three basic methods to protect
software: patents, copyrights, and trade secrets. Patents protect the rights
to the idea itself, while copyrights protect the rights to the expression of
the idea. Trade secret laws protect the rights to confidential business
information.* However, in many cases laws are not clear about the
enforcement of intellectual property rights. As such, a major challenge
facing software reuse is to balance these rights between software 1,
suppliers, repositories, and users.

Several approaches have been proposed by various members of the
software community to address intellectual property rights. For example,
one approach proposed having repositories acquire full rights to software
components. However, questions were raised about a repository’s ability

‘Proceedings of the Workshop on Legal Issues in Software Reuse (IDA Document D-1004), Institute for
Defense Analysis, July 1991.

*Patents and copyrights are governed by federal law. Trade secrets are governed by state laws that
may vary from state to state.

Page 12 GAOAMTEC-93-16 Issues Facing Software Reuse

to motivate suppliers to do this because the component supplier will lose
exclusive rights to commercially market the component.

Another approach proposed having software suppliers license limited
software rights to a repository. However, issues were raised that if rights
are transferred through a licensing agreement, future users of the
component would need to be protected from breaching license
agreements. Further, repositories would need to track all uses of software
components to ensure that royalties and service fees are compensated to
the component supplier and that licensing agreements are enforced. If the
repository is unable to track software components and enforce licensing
agreements, suppliers could be discouraged from giving up partial
software rights to the repository.

Liability Liability, in the context of software, refers to the legal responsibility for
harm attributable to software components. Liability may affect not only
the supplier of the component, but also the repository and user. For
example, software suppliers could be liable for submitting defective
software components that fail to meet performance standards or cause a
software system malfunction. Repositories could be liable for marketing
and distributing defective components or not properly enforcing the rights
to software components. Users could be liable for infringing the
intellectual property rights attached to a software component.

However, the subject of liability for software is fairly new to the law. As a
consequence, there are still questions, such as whether software is a
product or service, that have left some uncertainty about the nature of
liability that may accompany software. For this reason, experts believe
that organizations interested in reuse need to address liability issues,
otherwise

. suppliers may be reluctant to submit components for reuse,

. repositories may limit the availability of components, and
l users may be unwilling to use the components in the repository.

Acquisition Policies Many in the software reuse community acknowledge that changes need to
be made in federal acquisition policies of software systems before
software reuse can be effective. There are concerns that if industry is not
involved in these efforts, reuse goals will not be achieved. Some of the
issues that have arisen include how reuse should be considered in the

Page 13 GAOAMTEC-93-10 Ietmee Facing Software Reuse

8-261542

request for proposals process, what criteria to use to evaluate proposals,
how costs of reuse will be evaluated and estimated, and what incentives
are needed in solicitation documents to promote reuse. These concerns
have prompted the actions of groups such as the Special Interest Group
Ada and Institute for Defense Analysis, which sponsored a workshop to
determ ine how and what to incorporate into the procurement process to
encourage and promote reuse.

As requested, we did not provide a draft of this report to the Department
of Defense. Instead, we discussed the facts of this report with officials
from the Office of the Director for Defense Information; the Defense
Information Systems Agency’s Center for Information Management; the
Air Force, Army, and Navy; and with software experts in industry. These
officials generally agreed with the facts as presented. We have
incorporated their views in the report as appropriate.

We conducted our review between April 1992 and December 1992, in
accordance with generally accepted government auditing standards. As
agreed with your office, unless you publicly announce the contents of this
report earlier, we plan no further distribution until 30 days from the date
of this letter. We will then send copies of this report to other interested
committees; the Director for Defense Information; the Director for
Defense Research and Engineering; and other interested parties. Copies
will also be made available to others upon request.

If you or your staff have any questions concerning this report, please
contact me at (202) 612-6240. Other major contributors are listed in
appendix III.

Sincerely yours,

Samuel W . Bowlin
Director, Defense and Security

Information Systems

Page 14 GAO/IMTEC-93-16 Issues Facing Software Reuse

‘.:

a

Page 15 GACMMTEC-93-16 Issues Facing Soltware Bewe

,:,
r,:’ ,’ _’ ,.:

Contents

Letter

Appendix I
Objectives, Scope,
and Methodology

Appendix II
Department of
Defense Reuse
Initiative

Appendix III 21

Major Contributors to
This Report

Table Table 1: Summary of Technical Issues 7

Figures Figure 1: Examples of Reusable Software Components 3
Figure 2: Conceptual Framework of the Software Reuse Process 4
Figure 3: Key Functions of Component Management 6

Abbreviations

ASDCSI Assistant Secretary of Defense for Command, Control,

CARDS
DARPA
DDIWE
DISA
DLA
DOD
GAO
FODA
IDA
IMTEC
NASA
RIG
SEL
STARS

Communications and Intelligence
Central Archive for Reusable Defense Software
Defense Advanced Research Projects Agency
Director for Defense Research and Engineering
Defense Information Systems Agency
Defense Logistics Agency
Department of Defense
General Accounting Office
Feature Oriented Domain Analysis
Institute for Defense Analysis
Information Management and Technology Division
National Aeronautics and Space Administration
Reuse Library Interoperability Group
Software Engineering Laboratory
Software Technology for Adaptable Reliable Systems

Page 16 GAMMTEC93-16 Issues Facing Software Reuse

Page 17 GAG/IMTECI3-16 Issues Facing Software Reuse

Appendix I

Objectives, Scope, and Methodology

On February 7,1992, the Chairman of the Subcommittee on Defense,
House Appropriations Committee, requested that we provide background
information on software reuse, including an overview of issues that can
inhibit effective software reuse, and information on Defense’s strategy to
implement a departmentwide software reuse program.

To meet our objectives, we

met with reuse experts in private industry, government, and academia to
discuss the concepts of reuse, including benefits and issues of effective
reuse;
attended the 5th Annual Software Reuse Workshop in Palo Alto, Ca., and
reviewed papers to identify the state of reuse;
observed and discussed reuse experiences with private industry, private
organizations, and special interest groups;
met with Defense officials to identify roles, responsibilities, and strategies
for Defense’s departmentwide software reuse initiative; and
examined reuse activities and research and development efforts underway
in Defense.

We performed our work at the Office of the Director for Defense
Information, Arlington, Va.; Center for Information Management,
Arlington, Va.; Defense Advanced Research and Projects Agency,
Arlington, Va.; Software Engineering Institute, Pittsburgh, Pa.; U.S. Army
Software Reuse Center, Washington, D.C.; U.S. Navy Information Systems
Management Center, Washington, D.C.; U.S. Air Force Systems and
Software Design, Hanscom Air Force Base, Ma.; Defense Logistics
Agency’s Systems Automation Center, Columbus, Oh.; and National
Aeronautics and Space Administration’s Goddard Space Fiight Center,
Greenbelt, Md.

We also visited the offices of International Business Machines Corporation
in Gaithersburg, Md., Manassas, Va., Rockville, Md., and Owego, Ny;
University of Maryland, College Park, Md.; Software Productivity
Consortium, Herndon, Va.; Reuse, Inc. Fairfax, Va.; Raytheon Missile
Systems Division, Bedford, Ma.; Mitsubishi Electric Research Laboratories,
Cambridge, Ma.; Westinghouse Electric Corporation, Baltimore, Md.;
Massachusetts Institute of Technology, Boston, Ma; and Hewlett Packard,
Palo Alto, Ca.

Page 13 GAOAMTEC-93-16 Issues Facing Software &we

Appendix II

,: Department of Defense Reuse Initiative

Over the last few years, software reuse has gained increased attention
throughout the Department of Defense as a way to reduce software costs
and improve productivity and software quality. A draft of Defense’s
software technology strategy states that the greatest estimated Defense
cost savings over the next 16 years will come from reusing software
assew savings of $11.3 billion in constant 1992 dollars by the year 2008.l
Other Defense documents note that the benefits of reuse go beyond cost
savings to include substantial increases in productivity from avoidance of
rework, and added sofhvare quality through the use of tested components.

Responsibility for software within the Department of Defense is divided
between the Director for Defense Research and Engineering (DDFUE), who
is responsible for embedded systems and information technology
research, and the Assistant Secretary of Defense for Command, Control,
Communications and Intelligence (ASDCX), who carries responsibility for
information systems and command and control systems.

The Defense Software
Reuse Initiative

A Memorandum of Agreement between ~~~4231 and DDR&E, effective
November 26,1991, established a cooperative partnership for
implementing software and other information technology initiatives for
the Department of Defense. On the basis of this agreement, the Director
for Defense Information proposed a Defense software reuse initiative to
provide a “single, consistent departmentwide software reuse strategy, with
associated policies, practices, approaches, and programs.” The initiative
sought to build partnerships among users of reusable components,
suppliers of these components, and the research and development
community.

The Defense software reuse initiative is a voluntary and cooperative
alliance of individual DOD reuse activities with active participation from
the three major software reuse programs: Air Force’s Central Archive for
Reusable Defense Software (CARDS), DARPA'S Software Technology for
Adaptable Reliable Systems (STARS), and the Defense Information Systems
Agency’s (DNA) Software Reuse Program. It is guided by a software reuse
executive steering committee representing the ~~1x31, DDFU~E, Joint Staff,
Army, Navy, Air Force, DISA, Defense Logistics Agency (DLA), Defense
Intelligence Agency, and the National Security Agency. The steering
committee reports to both ASDC~I and DDR&E, and is supported by working
groups responsible for addressing technical and management issues. DNA’S

I& of Department of Defense Software Technology Strategy, Director of Defense Research and
lhgheering, December 1991.

Page 19 GAUIM’l’ECQ3-16 Issues Facing Software Reuse

Appendix II
Department df Defewe Reuse Initlatlve

Center for Information Management is managing the initiative and
providing a focal point for coordination.

Initiative’s Vision and
Strategy

Defense’s software reuse initiative holds a vision, “to drive the DOD
software community from its current ‘reinvent the software cycle’ to a
process-driven, domain-specific, architecture-centric, library-based way of
constructing soitware.” The strategy for achieving this vision lies in
systemizing the reuse process by identifying opportunities for reuse and
establishing a process to capitalize on those opportunities. Defense details
10 elements of this strategy:

l Specify the domains where reuse opportunities exist and identify criteria
to prioritize, qualify, and select domains for application of reuse
techniques.

l Define the types of products suitable for reuse and develop criteria to
validate these components for new applications.

l Determine what ownership criteria pertain to these components and
require conscious decisions regarding their ownership.

l Modify the current acquisition process so reuse is integrated into each
phase of the acquisition process and into the overall system/software life
cycle.

l Define models that may suggest novel strategies and require tailored
acquisition approaches to support reuse, in order to guide business
decisions.

. Establish procedures to collect metrics that (1) measure the payoff from
the reuse initiative and (2) aid developers in the selection of reusable
components.

l Define standards for the various types of components that will perm it their
certification for reuse.

l Pursue a technology-based investment strategy that identifies, tracks, and
transitions appropriate reuse-oriented process and product technologies.

l Conduct comprehensive training to ensure that practitioners and
policymakers capitalize on the initiative.

l Exploit near-term products and services that facilitate movement to a
reuse-based paradigm.

Page 20 GAO/IMTEC93-16 Issues Facing Software Reuse

,’ ‘> ..1

:

Appendix III

Major Contributors to This Report

Information
Management and

F’rank W. Deffer, Assistant Director
David Chao, Technical Adviser
Joseph J.H. Cho, Evaluator-in-Charge

Technology Division, Colleen M. Phillips, Senior Evaluator

Washington, D.C. Wiley E. Poindexter, Jr., Senior Evaluator

(610630) Page21

Orcltving Information

‘I‘htA first copy of each GAO report and testimony is free. Addit,ional
copit*s art* $2 each. Orders should be sent to the following address,
at*ct>mpanit+d by a check or money order made out to the Supwin-
trndent. of Documents, when necessary. Orders for 100 or more
copitas t,o be mailed to a single address are discounted 25 percent..

I1.S. (&neral Accounting Office
I’.(). 130x 60 15
(;ai(.hersburg, MD 20877

Ordt~rs may also be placed by calling (202) 275-6241.

